Bone-Targeted Agents (BTA) in metastatic prostate cancer (mPC) in alleviating the risk of skeletal-related events (SREs) as a consequence of bone metastasis. However, BTA is underutilized in Asian mPC patients, with only 23% respondents reported >1 year (70%) of the use of BTA. Our interim analysis shows BTA may be underutilized for Asian mPC patients with high risk of bone metastasis (6-10 classes) with the majority of respondents reporting <1 year (70%) of the use of BTA. The authors.

Disclosure: All authors have declared no conflicts of interest.

Funding: Hong Kong Society of Uro-Oncology.

https://doi.org/10.1016/j.annonc.2020.10.438

219MO Real-world utilization pattern of bone-targeted agents for metastatic prostate cancer: Web-based questionnaire study by Hong Kong Society of Uro-Oncology (HKSUO)

D.M.C. Poon1, K. Chan1, T. Chan1, F.Y. Cheung1, M. Lam2, D. Lam1, K. Law1, A. Leung1, L. Lee1, K.C. Lee1, H. Sze1, K. Wong1, C.C. Tong1, P. Kwong2

1Comprehensive Oncology Center, Hong Kong Sanatorium & Hospital, Hong Kong, China; 2Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China; 3Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China; 4Oncology, HKIQC - Hong Kong Integrated Oncology Centre, Hong Kong, China; 5Risk Management & Clinical Outcome, State Key Laboratory of Translational Oncology, Sir YK Pao Cancer Center, Hong Kong Cancer Institute, Prince of Wales Hospital, Hong Kong, China; 6Department of Oncology, Princess Margaret Hospital, Hong Kong, China; 7Oncology, AMO Oncology Centre, Hong Kong, China; 8Oncology, International Medical Centre, Hong Kong, China; 9Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong, China; 10Oncology, HEAL Oncology, Hong Kong, China; 11Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China; 12Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, China; 13Oncology, Hong Kong Integrated Oncology Centre, Hong Kong, China

Background: Sufficient evidence and international guidelines support the use of Bone-Targeted Agents (BTA) in metastatic prostate cancer (mPC) in alleviating the risk of skeletal-related events (SREs). However, BTA utilization pattern in Asian mPC patients is unclear. The Authors.

Methods: This study consisted of 20 questions with multiple choice answers, covering patient characteristics, practice preference and factors influencing the use of BTA for mPC. The survey was posted online and sent to HKSUO members, including oncologists and urologists in public and private sectors in Hong Kong. The survey was started since Jan 2020 and filled anonymously with password provided by HKSUO.

Results: 30 clinicians (oncologists, 77%; urologists, 23%) completed the survey, with >50% practicing in public hospitals. Majority of the mPC patients had bone metastasis, with only 23% respondents reported <25% of their patients with bone metastasis. Diagnostic imaging for bone metastasis was considered for newly diagnosed prostate cancer when PSA level was high (57%), or patients presented with bone pain (34%). 74% of the respondents considered <1 week of waiting time for the imaging was optimal, however, only 40% of their patients has done so. BTA was considered as one of the treatment components (77%), with the primary goal for SRE prevention (73%). Clinicians tend to reserve BTA in patients with higher burden of bone metastasis (6-10 bone metastasis, 27%; >10 bone metastasis, 40%). Efficacy (44%) and cost (33%) were the major considerations in selecting BTA. Denosumab was the preferred BTA (63%), while the average duration of treatment was ~1 year (70%).

Conclusions: Our interim analysis shows BTA may be underutilized for Asian mPC patients in real-life setting. Approximately 1/4 of the respondents did not consider BTA in their treatment plan, albeit understanding its primary goal in SRE prevention. The misconception regarding the benefit of BTA limited in higher burden of disease may be the potential barriers. There seems to be an unmet need in the awareness of optimal use of BTA in mPC.

Legal entity responsible for the study: The authors.

Funding: Hong Kong Society of Uro-Oncology.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.10.439

Table 220P: Base case results

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Total Cost (US$)</th>
<th>Total QALYs</th>
<th>Incremental ICER (US$/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT only</td>
<td>97,767</td>
<td>3.56</td>
<td>4.70</td>
</tr>
<tr>
<td>DCX + ADT</td>
<td>98,237</td>
<td>3.56</td>
<td>5.08</td>
</tr>
<tr>
<td>AA + ADT</td>
<td>132,403</td>
<td>5.16</td>
<td>6.45</td>
</tr>
<tr>
<td>APA + ADT</td>
<td>300,891</td>
<td>4.14</td>
<td>5.30</td>
</tr>
<tr>
<td>ENZ + ADT</td>
<td>366,476</td>
<td>5.22</td>
<td>6.51</td>
</tr>
</tbody>
</table>

Conclusions: Abiraterone plus ADT is the preferred treatment option for men with mHSPC at a WTP threshold of US$100,000 per QALY.

Legal entity responsible for the study: The authors.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.10.440

A cost-effectiveness analysis of systemic therapy for metastatic hormone-sensitive prostate cancer

W.W. Sung1, H.C. Choi2, P.H. Luk2, T.H. So2

1Stanford University School of Medicine, Clinical Excellence Research Center, Stanford, CA, USA; 2Clinical Oncology Department, Queen Mary Hospital, Hong Kong, China

Background: The treatment paradigm of metastatic hormone-sensitive prostate cancer (mHSPC) has significantly changed over the past decade. Currently, approved first-line treatment options include (1) androgen deprivation therapy (ADT) alone, ADT plus one of the following: (2) docetaxel, (3) abiraterone, (4) enzalutamide, and (5) apalutamide. The high cost of novel androgen receptor pathway inhibitors warrants an understanding of the combinations’ value by considering both efficacy and cost. The objective of this study was to compare the cost-effectiveness of these treatment options in mHSPC from the US payer perspective to guide treatment sequence.

Methods: A Markov model was developed to compare the lifetime cost and effectiveness of ADT alone, docetaxel plus ADT, abiraterone plus ADT, enzalutamide plus ADT, and apalutamide plus ADT in the first-line treatment of mHSPC using outcomes published in peer-reviewed literature. Health outcomes were measured in life-years and quality-adjusted life-years (QALYs). Drug costs were obtained from the Veterans Affairs Pharmacy Catalog in 2020 US dollars. We extrapolated survival beyond closure of the trials. Model robustness was addressed in univariable and probabilistic analyses. A willingness-to-pay (WTP) threshold of US$100,000 per QALY was used.

Results: Compared to ADT alone, docetaxel plus ADT provided a 0.31 QALY gain at an ICER of US$1,542 per QALY. Abiraterone plus ADT provided an additional 0.29 QALY gains against docetaxel plus ADT, with an ICER of US$26,416 per QALY. Compared to abiraterone plus ADT, enzalutamide plus ADT provided an additional 0.06 QALY gains at an ICER of US$3,826,216 per QALY. Given the WTP threshold of US$100,000 per QALY, abiraterone plus ADT represented high-value health care.

Table 220P: Base case results

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Total Cost (US$)</th>
<th>Total QALYs</th>
<th>Incremental ICER (US$/QALY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT only</td>
<td>97,767</td>
<td>3.56</td>
<td>4.70</td>
</tr>
<tr>
<td>DCX + ADT</td>
<td>98,237</td>
<td>3.56</td>
<td>5.08</td>
</tr>
<tr>
<td>AA + ADT</td>
<td>132,403</td>
<td>5.16</td>
<td>6.45</td>
</tr>
<tr>
<td>APA + ADT</td>
<td>300,891</td>
<td>4.14</td>
<td>5.30</td>
</tr>
<tr>
<td>ENZ + ADT</td>
<td>366,476</td>
<td>5.22</td>
<td>6.51</td>
</tr>
</tbody>
</table>

Conclusions: Abiraterone plus ADT is the preferred treatment option for men with mHSPC at a WTP threshold of US$100,000 per QALY.

Legal entity responsible for the study: The authors.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.10.440